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Mohr-cyclides, a 3D representation of geological tensors: The examples
of stress and flow
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Abstract
Mohr-circles are commonly used to represent second-rank tensors in two dimensions. In geology, this mainly applies to stress, flow, strain and
deformation. Three-dimensional second rank tensors have been represented by sets of three Mohr-circles, mainly in the application of stress.
This paper demonstrates that three-dimensional second rank tensors can in fact be represented in a three-dimensional reference frame by
Mohr surfaces, which are members of the cyclide family. Such Mohr-cyclides can be used to represent any second rank tensor and are exem-
plified with the stress and flow tensors.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Historical background
Mohr diagrams, one of the most used and useful tools in
structural geology, were introduced by German scientist Otto
Mohr (1882). As a civil engineer, Mohr was especially inter-
ested in mechanical forces acting on planes and, thus,
presented the scientific community with a graphical represen-
tation for three-dimensional stress, plotting normal stress (sn)
versus shear stress (t). The result was the familiar Mohr dia-
gram for stress, consisting of the three principal circles of
stress and the surface they encompass, where any plane P
can be plotted and assigned values for sn and t, with their ori-
entation given in terms of single or double angles. This graph-
ical representation has since been used extensively in
empirical mechanical problems, either using failure envelopes
or as a tool to study fracture opening and reactivation (e.g.
Delaney et al., 1986; Jolly and Sanderson, 1997).
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The Mohr-circle concept was adapted for strain tensors by
Nadai (1950), who devised a graphical representation of qua-
dratic elongation versus shear strain, where angles between
lines are plotted in the unstrained form. The plot is in all
ways similar to Mohr’s diagram and establishes a parallel be-
tween the principal circles of stress and the principal sections
of the deformation ellipse. Nadai (1950) also defined a Mohr
diagram for reciprocal strain, with reciprocal quadratic elonga-
tion versus reciprocal shear strain.

Mohr diagrams were formally introduced to structural geol-
ogy by Brace (1961), who coined the term and explored its
multiple applications in the study of deformed rocks. This
new line of research was not lost and Ramsay (1967) further
demonstrated the relevance of Mohr diagrams in strain analy-
sis, showing that Mohr circles for reciprocal strain could be
used to represent strain ellipses. Means (1982) introduced
the Mohr diagram for the stretch tensor, where he explored
the potential of polar coordinates and its applications to the
study of material line behaviour, encompassing both rotational
characteristics and stretch. Further research developed numer-
ous applications of Mohr diagrams for strain to structural ge-
ology problems, namely inhomogeneous deformation (Means,
1983), strain refraction (Means, 1983; Treagus, 1983), strain
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analysis (Treagus, 1986 (which includes a comprehensive
background on the history of Mohr diagrams in Structural Ge-
ology); Lisle and Ragan, 1988; Passchier, 1990a; Treagus,
1990; Simpson and De Paor, 1993; Vissers, 1994; Zhang and
Zheng, 1997) and vorticity analysis (Passchier and Urai,
1988; Passchier, 1990b). Mohr diagrams for flow (velocity
gradient) tensors were introduced by Lister and Williams
(1983), following an idea of J.P. Platt. Since then, works
like Means (1983), Bobyarchick (1986), Passchier (1986,
1987, 1988, 1993), Wallis (1992), Simpson and De Paor
(1993) showed how these diagrams could be used to interpret
and understand the principles of progressive deformation.
1.2. Tensors and Mohr-circles
As demonstrated first by Otto Mohr (1882), all tensors can
be represented by Mohr diagrams. The relationship between
a tensor Tij and its Mohr-circle can be illustrated with a sec-
ond-rank tensor, which requires four components (Fig. 1). In
a 2D Mohr space, the vertical axis Tij is used to plot tensor
components T12 and T21, whereas horizontal coordinates stand
for the Tii components, T11 and T22. Thus, two points can be
plotted (Means, 1982): x1 as (T11, �T21) and x2 as (T22,
T12). Either the T12 or the T21 sign has to be changed from
the original tensor components to insure equivalence of posi-
tions above or below the horizontal axis of the Mohr diagram.
The convention of Means (1982) considers �T21, and defines
Mohr-diagrams of the first kind (De Paor and Means, 1984). If,
on the other hand, one considers �T12, the Mohr-diagram is
said to be of the second kind (De Paor and Means, 1984).
Points x1 and x2 define a diameter (dashed line) of a circle,
which represents the Mohr-circle of tensor Tij (Fig. 1). Any
given tensor can be described by an infinite number of sets
of Tij components, each representing a description of the ten-
sor in a specific reference frame. Considering all these
Fig. 1. Mohr-circle for an unspecified tensor Tij, defined by two alternative di-

ameters: solid: using random tensor components; dashed: using the eigen-

values e1 and e2.
possible sets, a Mohr circle can be defined as ‘‘(.) the geo-
metrical locus of all possible sets of tensor components’’
(Means, 1992).

Second-rank tensors in three dimensions, with nine compo-
nents, can also be represented by Mohr-circles. The easiest
way to do this is to consider only part of the full tensor. An
example of this ‘‘technique’’ is the literature published on ve-
locity gradient tensors, which, for Mohr-diagram purposes,
simplifies flow to monoclinic geometries, characterised by
the vorticity vector parallel to one of the eigenvectors and
one of the instantaneous stretching axes. Assuming this,
a tensor

Tij ¼

������
T11 T12 0
T21 T22 0
0 0 T33

������
can be reduced to

Tij ¼
����T11 T12

T21 T22

����
and plotted straightforward as a Mohr-circle, ignoring the
three-dimensional component given by T33. A second method
was suggested by Otto Mohr himself, for the case of stress, ap-
plied later to quadratic deformation. The stress (deformation)
tensor is written as a diagonal matrix, where Tii are the eigen-
vectors of the tensor and the principal stresses s1,s2,s3 (for in-
stance Fig. 3), or the principal quadratic elongations l1,l2,l3.
These components are then used to draw three circles, or
half-circles, that represent the principal sections of the stress
or finite strain ellipsoid.
1.3. Scope
However ingenious, Mohr-circles for second-rank tensors
remain simplifications because Mohr-space is always consid-
ered to be two-dimensional. This means that in order to accom-
modate a three-dimensional second-rank tensor in Mohr-space,
it must be partitioned into three two-dimensional second-rank
tensors, resulting in a combination of three Mohr-circles. In
other words, the so called ‘‘three-dimensional diagram’’ for
stress is, in fact, a two-dimensional representation of three
eigenvector sections of a second-rank symmetric tensor.

The purpose of this paper is to investigate the possibility of
expanding the representation of tensors into a three-dimen-
sional Mohr-space, using examples of stress and flow. After
some initial testing, it turned out that real three-dimensional
Mohr-diagrams do exist and are represented by surfaces of
the cyclide family and related toroids. These surfaces share
all the useful properties of 2D Mohr-diagrams, with the advan-
tage of a full three-dimensional geometry. They will be hence-
forth referred to as Mohr-cyclides. Symbols and conventions
are listed in Appendix A.
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1.4. Some properties of cyclides
A general cyclide is a non-spherical fourth degree polyno-
mial surface, introduced by Dupin (1822), which can be de-
fined by an implicit equation:

�
x2 þ y2þ z2�D2 þB2

�2¼ 4ðAx�CDÞ2þ4ðByÞ2 ð1Þ

or a parametric system (e.g. Pratt, 1990; Fig. 2a):

x ¼ Bsin jðCcos q�DÞ
A�Ccos q cos j

y ¼
D
�
C� Acos q cos j

�
þ B2cos q

A� Ccos q cos j
with

q � 0�

j � 180�

z ¼ Bsin qðA� Dcos jÞ
A� Ccos qcos j

ð2Þ

where A, B, C and D are constant parameters, with
B2 ¼ A2 � C2. The relative magnitude of parameters A, C
and D (B is always dependent) defines the shape of the sur-
face in the cyclide family (Fig. 2; Shene, 2000). This work
will focus mainly on single-crescent cyclides and torii with
converging points. Some other cyclide properties are (Allen
and Dutta, 1997; Shene, 2000; Fig. 2):
Fig. 2. A general cyclide and its parameters with thumbnails of several surfaces of

ring-cyclide (torus); (d) torus with a converging point, or, single singularity spindle

cipal circles of each cyclide surface.
(1) All lines on the curvature of the cyclide, defined by equal
values of q or j, are circles.

(2) A cyclide has two orthogonal planes of symmetry.
(3) The cyclide is fully defined by four major circles, two in

each symmetry plane, given by: q ¼ 0�, q ¼ 180�,
j ¼ 0�, j ¼ 180�. If parameter D is equal to either A or
C, three circles are enough.

(4) The radii of the major circles are defined by the A, C, and
D parameters.

2. Mohr-cyclides for stress
2.1. Mohr-circles for stress
A stress tensor Sij can be represented in 2D as a Mohr di-
agram, defined by the three major circles, which represent
planes of principal stress, and the area encompassed by them
(Fig. 3). The principal circles intersect the sn axes at three
points, which correspond to the three principal axes of stress
s1, s2 and s3 (maximum, intermediate and minimum stress).
Since shear stress is zero at these orientations, s1, s2 and s3

also represent the eigenvalues of Sij. Normal and shear stress
(sn and t) values can be read as Cartesian coordinates in the
sn- and t-axis for any plane P, represented by its normal NP

within this area. The orientation of P with respect to the prin-
cipal stresses is given by arcs of circles (dashed lines in
Fig. 3). Since stress is a symmetric tensor, principal circles
are centred on the sn-axis and, for simplification, Mohr-dia-
grams usually display the top half-circles only.
the cyclide family: (a) Double-crescent cyclide; (b) single-crescent cyclide; (c)

-cyclide; (e) double-singularity spindle cyclide. Black lines represent the prin-



Fig. 3. A Mohr diagram for stress (lower half left out for simplicity). All pos-

sible orientations plot as poles to planes in the circle perimeter or in the shaded

area. Stress components for a plane P can be read as Cartesian (snP, tP) or po-

lar (scos4, ssin4) coordinates. Orientation of plane P is determined with an-

gles a, b, g, measured to its pole with respect to the principal stresses s1, s2,

s3.
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2.2. Plotting procedure
The stress tensor operation assigns a unique stress vector s

to each plane P. In traditional Mohr diagrams for stress, the an-
gle between s and the pole NP to plane P is used to find normal
and shear stress for each plane, as discussed above. However,
some information is omitted with this construction method,
because the angle s ^ NP can be the same for planes with dif-
ferent orientations in space. This implies that stress vectors for
two different planes can plot at the same point in a Mohr-
circle. 3D cyclide constructions in Mohr space address this
problem.

Plotting Sij in a three-dimensional space requires the defini-
tion of a second angle d. In order to do this, it is useful to
choose an inherent property of the stress tensor itself, i.e.,
an element that does not involve external reference frames.
We consider the relative orientation of the stress plane S,
which contains the stress vector and the pole NP (and therefore
s, sn and t), with respect to one of the eigenvectors of Sij, in
this case s1. This is the first significant difference between 2D
and 3D representations of stress, since the geometrical proper-
ties of 2D Mohr-circles unavoidably lock S in its 2D (sn-t)
reference frame. The angle d is thus defined as the angle be-
tween the pole of the stress plane NS, a line in plane P normal
to t, and the maximum principal stress s1 (Fig. 4a,b). d values
can be calculated using the dot-product expression:

NS$s1 ¼ NS$s1$cos d

cos d¼ NSxs1x þNSys1yþNSzs1z

NS$s1

ð3Þ

where NSi, s1i are vectorial components and the upper bar de-
notes magnitude. Since NS is the pole of the stress plane, de-
fined for example by sn and s, its components are obtained
via the cross-product:
sn � s ¼ det

������
NSx NSy NSz

snx sny snz

sx sy sz

������ ð4Þ

Since NS is normal to t, shear stress in P can be resolved into
two components, one in the direction of s1, ts1 and the other
normal to the principal maximum stress, tts1 (Fig. 4b). Add-
ing the angle d allows the stress planes to unfold from the fixed
2D plane (YZ ) and materialises a three-dimensional surface
with the same properties of a Mohr diagram (Fig. 4d). The re-
sulting shape is a single-crescent cyclide, a Mohr-cyclide for
stress, which can be defined in polar coordinates or
analytically.

The value of d defines three cases of special significance
which help to understand its geometric effect:

(1) Where d ¼ 0� (Fig. 4c), s1 lies in the P-plane and, there-
fore, is orthogonal to the S-plane and its components s, sn

and t. It is clear that s2 and s3 will be on the S-plane and
that a (N ^ s1) ¼ 90�, so d ¼ 0� defines the s2s3 principal
stress plane, plotted in the XY-plane of the Mohr-cyclide.
In this case, there is no shear stress in the s1 direction
(ts1 ¼ 0), which is in agreement with the condition s1tt.

(2) If d ¼ 90� (Fig. 4c), s1 is a line in the S-plane, normal to
the P-plane. In this arrangement, a is variable and one of
the minor principal stresses (either s2 or s3) is parallel to
NS. Therefore, d ¼ 90� is a condition for the s1s2 and s1s3

principal planes of stress, which plot in the YZ-plane in
Mohr space. In these planes, shear stress is zero in orien-
tations normal to s1 (tts1 ¼ 0), in agreement with the fact
that s1 and t are both in S.

(3) All other scenarios, with d in the range ]0�,90�[, or, ]
90�,180�[ (Fig. 4b) are intermediate between the two pre-
vious conditions and account for planes oblique to the
principal stress planes.

Polar coordinates of P in a Mohr-cyclide are similar to co-
ordinates in the 2D scenario, but with the extra degree of free-
dom added by angle d they become (s, 4, d), as shown in
Fig. 4b:

XM ¼ s$sin 4$cos d

YM ¼ s$cos 4

ZM ¼ s$sin 4$sin d ð5Þ

The analytical description of the Mohr-cyclide follows the
equations of a general cyclide (Eqs. (1) and (2)). However,
Mohr-cyclides for stress represent a special case, where the
simplification C ¼ D applies (Fig. 2). The parameters can be
further adapted, considering the radii of the principal circles
of the cyclide which represent the principal planes of stress,
as shown above (Fig. 5):



Fig 4. Mohr-cyclides for Stress. (a) Stress vectors in real space; (b) Stress vectors in 3D Mohr-space; (c) principal planes of stress in 3D (only half-circles are

shown for simplicity); (d) the corresponding Mohr-cyclide, built with Eq. (5) or Eq. (8) (lines represent families of equal q planes). Perspective changes slightly

in (d).
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A¼ 2s1 � s2� s3

4

C ¼ s2 � s3

4
ð6Þ

There is, nevertheless, one important difference: cyclides in
the canonical form are centred at the origin, while stress
Mohr-cyclides may not. To address this problem, it is neces-
sary to introduce an extra parameter, called E, that shifts the
XM ¼
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 � s1s2� s1s3þ s2s3

p
$sin j$ðs2� s3Þ$ðcos q� 1

2s1 � s2� s3 � ðs2� s3Þ$cos q$cos j

YM ¼
�
s2� s3

�
$½s2� s3 � ð2s1� s2� s3Þ$cos q$cos j� þ

�
s2

1�
2s1 � s2� s3� ðs2� s3Þ$cos q$co

ZM ¼
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 � s1s2 � s1s3 þ s2s3

p
$sin q$½2s1 � s2 � s3 � ð

2s1 � s2 � s3 � ðs2 � s3Þ$cos q$cos j
Mohr-cyclide in the Y-direction. E can be found by the
expression:

E¼ s1�A¼ 2s1þ s2þ s3

4
ð7Þ

Note that E is not a translation in the physical sense, it merely
allows the principal plane of the cyclide to be identical to the
principal planes of stress. Substituting Eqs. (6) and (7) into Eq.
(2) yields:
Þ

s1s2� s1s3 þ s2s3

�
$cos q

s j
þ 2s1þ s2þ s3

4

s2 � s3Þ$cos j� ð8Þ



Fig. 5. (a) Parameters used to define a general single-crescent cyclide with

C ¼ D (compare with Fig. 2). (b) The same parameters adapted to define

a Mohr-cyclide for stress. Note that E shifts the Mohr-cyclide from the origin.

585S. Coelho, C. Passchier / Journal of Structural Geology 30 (2008) 580e601
A similar substitution can be done for Eq. (1), but Eqs. (8),
although lengthy, are not complex and are definitely more
practical to compute because they require only simple trigo-
nometry, without involving 4th-degree polynomials.

A Mohr-cyclide for stress can, thus, be constructed using
either:

(1) The magnitudes of stress of a population of planes, with
angles 4 (s ^ sn) and d (NS ^ s1) and Eq. (5); or

(2) The principal stress values and Eqs. (8).
2.3. Alternative Mohr-cyclides for stress
Mohr-cyclides for stress are, as seen above, simple-crescent
cyclides with a converging point at the principal maximum
stress. Although s1 was chosen as the most useful reference
axis (Fig. 6a), it is possible to define d with respect to any
of the other principal stresses, which results in a change of
the cyclide’s converging point. Doing this, even for the same
relative magnitude of principal stresses, produces dramatic
geometric differences.

Using s3 as reference axis, the Mohr-cyclide keeps its
simple-crescent shape, although reversed with respect to s1-cy-
clides (Fig. 6c), because the convergence point is the minimum
principal stress. Accordingly, s1s2 is now horizontal, producing
a ‘‘bulkier’’ shape, while s1s3 and s2s3 are vertical in Mohr-
space. The greatest geometric change appears when the inter-
mediate s2 is chosen as reference axis: the Mohr-cyclide loses
the simple-crescent shape and becomes a torus with a con-
verging point at s2 (Fig. 6b). The difference in surface shape
is part of a continuous transition in the cyclide family, which
results from ‘‘sliding’’ the converging point from the maxi-
mum principal stress to the intermediate and minimum
values. If one would abandon the condition s1 > s2 > s3,
and decrease s1 gradually in Fig. 6, the crescent would
change to a sphere (s1 ¼ s2), then a torus (s2 > s1 > s3),
a second sphere (s1 ¼ s3) and finally a reversed crescent cy-
clide (s2 > s3 > s1). The three possible cyclides are defined
by the same stress tensor and can be interpreted as equivalent
Mohr-diagrams. The significance of the reference axes, how-
ever, changes with the principal stress reference axis selected
for each case. Note that, despite the geometrical disparity re-
sulting from different references, all these three geometries
are reduced to the same two-dimensional Mohr-circles dia-
gram (inbox in Fig. 6).
2.4. Interpretation

2.4.1. Normal and shear stress
The departure from 2D Mohr representations with Carte-

sian axes labelled sn and t implies that coordinates in
Mohr-cyclides must be interpreted differently. While sn can
still be read directly as the Y-Mohr coordinate (YM), there is
no similar parallel for the value of t, which is now a vector
in the XMYM plane. The Cartesian coordinates of this 3D
representation should be read as follows (Figs. 4b and 6):

(1) XM: t(s1), component of t in the s1 direction
(2) YM: sn, normal stress (as in 2D)
(3) ZM: t(ts1), component of t in the plane orthogonal to s1

If the cyclide is defined with respect to a principal stresses
other than s1, then this interpretation must be changed accord-
ingly as illustrated in Fig. 6.

2.4.2. Angles with principal stresses
Mohr diagrams are especially useful because they allow

quantification of the angles between the pole to a plane, NP,
and the principal stresses, s1, s2 and s3. In Mohr-circles, an-
gles a, b and g, can be read in two ways (Fig. 3): directly, con-
sidering lines parallel to t at s1, s2 and s3, or as double angles
in the principal planes of stress, s1s2, s1s3 and s2s3. Since
Mohr-circles are a 2D representation, the angles are all con-
tained in the XY-plane (snt). Equal-angle lines will be repre-
sented as arcs in the Mohr-circle plane, in the space limited
by the three principal circles (grey area in Fig. 3). These
arcs are concentric with respect to the centres of principal cir-
cles (dashed lines in Fig. 3). Each angle measures 90� in the
plane that does not contain its reference principal stress:
a (P ^ s1) is 90� in s2s3, b (P ^ s2) in s1s3 and g (P ^ s3)
in s1s2.

The same principles apply to 3D Mohr-cyclides, though the
extra dimension adds insight into how these angles are distrib-
uted in space. As before, a, b and g can be read as single or
double angles, but in Mohr-cyclides equal-angle lines are not



Fig. 6. The three possible Mohr-cyclides for a set of principal stresses: s1 ¼ 2; s2 ¼ �1; s3 ¼ �2. (a) With respect to s1; (b) with respect to s2; (c) with respect to

s3. Inbox: the typical Mohr-circle diagram for the same stress values. XM, YM and ZM are X,Y,Z coordinates in Mohr-space.
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confined to a plane and have more complex geometries than
concentric arcs (Fig. 7). Only equal-a lines, although not arcs
of circles, have a relatively simple geometry. This is because
the Mohr-cyclide in Fig. 7 is defined with respect to s1.

2.4.3. Geometric variation
Mohr-cyclides for stress are defined by the values of the ei-

genvectors of Sij, which translate in the physical world as the
principal stresses in a particular stress field. Because principal
stresses define the stress ellipsoid, Mohr-cyclides are powerful
tools to represent graphically its shape variations and the stress
state they represent. A compact way to illustrate the relation-
ship between stress ellipsoid and Mohr-cyclide is by means of
the stress diagram suggested by Lisle (1979). The graph makes
use of the stress ratio,

R¼ d1

d2

¼ s2� s3

s1� s2

ð9Þ

by plotting d1 values as ordinates and d2 as abscissas. Other
stress ratios could have been used, such as the 4 proposed
by Angelier (1979) and Etchecopar et al. (1981), or the
Lode parameter, to build alternative graphs, but R proves to
be the most useful for the present purpose. Fig. 8 illustrates
all possible shapes of Mohr-cyclides, defined with respect to
s1, and allows the following observations:

(a) Oblate stress ellipsoids, characterised by s1 ¼ s2 > s3,
R ¼N and typical of axial extension stress states, plot in the
d1-axis and are represented by spheres. This applies to both
uni- and biaxial extensions.

(b) On the other hand, the (uni- or bi-) axial compression
represented by prolate stress ellipsoids, with s1 > s2 ¼ s3

and R ¼ 0, plots in the d2-axis. The Mohr-cyclide for this state
is a circle.

(c) Hydrostatic stress, where s1 ¼ s2 ¼ s3, is given by
a point at the origin of the diagram. In Mohr-space, hydrostatic
stress is also represented by a point.

(d) Intermediate situations, with s1 s s2 s s3, are given
by Mohr-cyclides (in this case single-crescent cyclides) with
different proportions, according to their R-value.

(e) The fact that some stress ellipsoids can be represented
in Mohr-space by spheres and circles is in no contradiction
with the statement that three-dimensional Mohr-diagrams are
surfaces of the cyclide family. Spheres can be interpreted as



Fig. 7. Equal-angle lines in Mohr-cyclides, considering examples with 30, 60, 80 and 90�: (a) a, (b) b and (c) g; (d) Example with a ¼ 70�, b ¼ 50� and g ¼ 50� (P

of Figs. 3 and 4). Mohr-cyclides are symmetric with respect to the t(ts1) � sn plane.

Fig. 8. Different shapes of Mohr-cyclides for stress, illustrated in the diagram proposed by Lisle (1979), according to variation of the stress ratio R.
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a special type of cyclide, the surface that forms the transition
between single crescent cyclides and torii. Although simpler
analytical solutions are the norm in common use, spheres
can also be described with the implicit or parametric equations
of the cyclide family (Eqs. (1) and (2)). The same reasoning
applies to circles.
3. Mohr-cyclides for flow
3.1. The flow tensor
Fig. 9. Mohr-circle for the velocity gradient tensor, Lij.
The flow tensor, known also as the velocity gradient tensor
(Lij), describes the velocity field of any point in a homoge-
neously deforming body (e.g. Spencer, 1980):

Lij ¼
vvi

vxj

vi ¼ Lijxj ð10Þ

The flow tensor can be decomposed into its symmetric (Dij)
and antisymmetric (Wij) components (e.g. Spencer, 1980;
Lister and Williams, 1983; Means, 1983). The partitioning
of Lij is additive:

Lij ¼ Dij þWij ð11Þ

Dij is a symmetric quantity and its eigenvectors are known as
the instantaneous stretching axes of flow (ISAi). The eigen-
values associated with these directions are the instantaneous
stretching rates, _si (e.g. Lister and Williams, 1983; Means,
1983).

Wij, the antisymmetric or skewed part, is the vorticity ten-
sor and represents the rotational component of flow and the an-
gular velocities (u) of lines. The wi components of w!, the
vorticity vector defined with respect to the ISA, can be read
directly from the vorticity tensor Wij (Means et al., 1980):

Wij ¼

������
0 �1=2wz 1=2wy

1=2wz 0 �1=2wx

�1=2wy 1=2wx 0

������ ð12Þ

The magnitude of w!, w, and the stretching rates along the ISA
may vary by some orders of magnitude. The problem is solved
by defining a normalising parameter s, the mean stretching
rate in the section normal to vorticity in monoclinic flows
(Passchier, 1997):

s¼
��_sj � _sk

��
2

ð13Þ

Dividing w=2 by s we obtain the sectional kinematic vorticity
number:

WK ¼
w��_sj � _sk

�� ð14Þ

WK is intimately connected with the nature of Lij and can also
be defined with the angle between the flow apophyses at jk
(Bobyarchick 1986; Passchier, 1987):
WKi
¼ cos

�
ej^ek

�
¼ cos y ð15Þ

Passchier (1997, 1998) derived other kinematic numbers that
can be used to further describe monoclinic flows, namely the
sectional kinematic dilatancy number, AK, which defines the
rate of area change in the jk-plane, and the sectional kinematic
extrusion number, TK, a measure of the stretching rate along
the vorticity direction. WK, AK, and TK are dimensionless num-
bers that fully describe the geometry of a flow with vorticity
parallel to ISAi (ei) and normal to the plane ISAjISAk (ejek)
(Passchier, 1997).
3.2. Mohr-circles for monoclinic flow
Mohr-circles for the flow tensor Lij, first introduced by
Lister and Williams (1983, following Platt), have the follow-
ing properties (Fig. 9):

(1) The coordinate axes XM,YM represent, respectively,
_sdstretching rate and _udrate of angular velocity.

(2) As for stress, the Mohr-circle is defined by the diameter
L11;�L21, L22;L12 (cf. Means, 1982).

(3) The maximum and minimum stretching rates plot in the
diameter parallel to the _s-axis; they represent the maxi-
mum and minimum instantaneous stretching axes: ISA1

and ISA2.
(4) Any point m, with h ¼ m ^ ISA1 measured counter clock-

wise in real and Mohr space, has _um angular velocity and
_sm stretching rate.

(5) The Mohr-circle intersects the abscissa at e1 and e2, the
two single directions of no angular velocitydthe eigen-
vectors of Lij; y ¼ e1^e2. Some flows have only one eigen-
vector and others none; in these cases, the Mohr-circle has
one or zero intersections with the abscissa.
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(6) The Mohr-circle intersects the ordinate at l1 and l2, the two
single directions of no instantaneous stretch; c ¼ l1 ^ l2.
As in (5), it is possible to have only one or zero intersec-
tions with the ordinate.

(7) From (3) it is clear that the radius of the Mohr-circle cor-
responds to the mean stretching rate s: (ISA1 � ISA2)/2.

(8) Coordinates of the Mohr-circle centre are of special signif-
icance: the ordinate of the centre is half the magnitude of
the vorticity vectordw/2 (cf. 5); the abscissa A is a mea-
sure of area change, closely related to AK:

AK ¼ cos c

A ¼ AK$s ð16Þ

Mohr-circles are, thus, able to represent different types of two-
dimensional flow, such as pure shear, general non-coaxial or
special types of pulsating flows. The relationship between
Mohr-circle geometry and the characteristics of Lij, allows
the diagrams to be useful as a gauge of flow parameters
(Passchier and Urai, 1988; Passchier, 1990b; 1991) or as ele-
ments to study inhomogeneous progressive deformation
(Means, 1983).
3.3. Plotting procedure
Fig. 10. Two representations of the effect of flow tensor on the position vector

m: (a) in real space; (b) in Mohr space.
The procedure followed in this section is in some ways
analogous to the description of stress-cyclides, although adap-
ted to the characteristics of a flow tensor. The most important
divergence is that, unlike Sij, the flow tensor does not have to
be symmetric. The degree of symmetry of flow depends on the
relationship between the vorticity vector and the ISA: if w! is
parallel to one of the ISA, flow is considered monoclinic; if
not, the flow has triclinic geometry (e.g. Robin and Cruden,
1994; Jiang and Williams, 1998; Iacopini et al., 2007).

We define the flow tensor as, following the additive proper-
ties of Lij (Means et al., 1980):

Lij ¼

������
_sx �wz=2 0

wz=2 _sy 0
0 0 _sz

������ ð17Þ

The main advantage of this notation is that principal stretches
and components of w! are given directly from tensor compo-
nents. Lij describes the velocity field of an imaginary particle
at a point m in space, defined by the position vector m!
(Fig. 10a):

v!i ¼ Lij m!j ð18Þ

This operation results in three velocity vectors, oriented with
respect to the reference axis; using tensor notation of Eq.
(17), these are coincident with the ISA and w! will be parallel
to one of them. These velocity vectors define _d, the rate of dis-
placement vector, also a velocity; its magnitude, d, is given by:
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x þ v2
y þ v2

z

q
ð19Þ

The orientation of _d in space is crucial to build Mohr-cyclides
for flow and is given by two angles, 4 and d (Fig. 14a). 4 is the
angle between _d and m!, given by the dot-product:

cos 4¼ mxvx þmyvyþmzvz

d
ð20Þ

d is the angle between U, the pole of the plane defined by _d
and m!, and one of the eigenvectors of Lij. Since the Mohr-cy-
clide is being constructed for monoclinic flow, it is useful to
choose the eigenvector that lies parallel to the vorticity vector
w!, and thus, d can be defined simply as U ^ w!:

cos d¼ Uxwx þUywyþUzwz

U$w
ð21Þ

Ui components are obtained with the cross-product of m! and
_d. With vorticity fixed in the zz-axis in Mohr-space,
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irrespective of its real orientation in real space, the Mohr-cy-
clide can now be plotted with the following polar coordinates
(Fig. 10b):

XM ¼ d$sin 4$cos d

YM ¼ d$cos 4

ZM ¼ d$sin 4$sin d ð22Þ

Alternatively, Mohr-cyclides for monoclinic flows can be de-
scribed by the general cyclide equations (Eqs. (1) and (2)),
adapted to reflect the geometry of a flow tensor as done above
for stress. There are, however, two major differences. First, Lij

does not have to be symmetric, in fact it is not for all non-co-
axial flows. Second, angle d in flow-cyclides is measured with
respect to w! (which can be parallel to any of the ISA),
whereas in stress, d is tagged to s1. Considering the general
case where the vorticity vector w! is parallel to the i-axis
and ISAi, parameters A, C and E can be redefined with the for-
mulas (Fig. 11):

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ey� _si

�2þE 2
x

q

C ¼
��_sj � _sk

��
4

E ¼
(

Ex ¼ wi
4

Ey ¼
2_si þ _sj þ _sk

4

ð23Þ

As before, B2 ¼ A2 � C2 and D is equal to C or A. Fig. 11 il-
lustrates the case where w! is parallel to zz, i.e., when w! has
only wz components (Eq. (17)), but the construction will be
similar in all aspects for the other two orientations of w!. Ta-
ble 1 summarises the parameters for all scenarios. Mohr coor-
dinates for any point (q,j) will be obtained by substituting
these parameters in Eq. (2). This procedure produces a set
of coordinates that define a cyclide with appropriate shape
and parameters, but symmetric with respect to the YMZM-
and XMYM-planes. Because flow may have an asymmetric
component, it is necessary to define an angle to rotate the para-
metric cyclides, in order to assure geometrical correspondence
with their tensor. This step can be accomplished with a general
rotation tensor Rij with a rotation vector normal to ZM (be-
cause symmetry in the XMYM-plane is desirable following
the convention for d). The rotation angle r is the angle be-
tween the negative YM and the cyclide vertical symmetry
plane. r is defined by the expressions:

r ¼ arctan

�
wi

2_s1 � _s2 � _s3

�
if _si > Ey;
or

r ¼ 180� � arctan

�
wi

2_s1 � _s2 � _s3

�
if _si < Ey ð24Þ

which, since they are equivalent to:

tan r¼ WK

AK � 2TK

; ð25Þ

characterise r as a gauge for non-coaxiality of the flow: for
r ¼ 0�, WK is zero, the flow is coaxial and the cyclide is sym-
metric in the YMZM-plane. By convention, r is measured
counter-clockwise for flows with WK > 0 and clockwise if
WK < 0. The rotated coordinates of the parametric Mohr-
cyclide can now be obtained by simple multiplication of
XM
�, YM

�, ZM
� by Rij:

XM ¼ X�M$cos r� Y�M$sin rþEx

YM ¼ X�M$sin rþ Y�M$cos rþ Ey

ZM ¼ Z�M ð26Þ

Again, the components of parameter E must be added to re-
move the cyclide centre from the origin.

The third method to draw Mohr-cyclides gives an outline of
their shape and uses the tensor components directly, in a way
similar to the plotting scheme proposed by Means (1982)
(Fig. 12). The construction for a flow tensor with _sx < _sy <
_sz and ISA1 parallel to w! and e1 at zz-axis, proceeds as
follows:

(1) Lij’s reference axes (the ISA, Eq. (17)) are plotted in
Mohr-space with coordinates:
ISA1: f0; _s1; 0g (component reversal)
ISA2: fwz=2; _s2; 0g (sign change)
ISA3: fwz=2; _s3; 0g (component reversal; Fig. 12a)

(2) ISA2 and ISA3 (in this example) define a diameter of a cir-
cle, parallel to YM. This circle intersects YM at e2 and e3,
two eigenvectors of Lij. The line connecting the centre
of the circle and _s1 intersects the circle at points q and r
(Fig. 12b).

(3) Line segments ISA1-r and ISA1-q define the diameters of
two additional vertical circles. These three circles are the
three major circles of a single crescent cyclide (Fig. 12c)
or a torus, in the case of ISA2 parallel to w!.

Summarising, Mohr-cyclides for monoclinic flow can be:

(1) Accurately plotted using polar coordinates (Eq. (22);
Fig. 10);

(2) Accurately plotted using parametric equations (Eq. (26);
Table 1; Fig. 11);

(3) Outlined from the tensor components (Fig. 12).



Fig. 11. The cyclide parameters for the three possible orientations of the vorticity vector in the reference frame: (a) parallel to ISA1; (b) to ISA2 and (c) to ISA3.
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Table 1

Parameters for flow Mohr-cyclides

Cyclide parameters (vorticity parallel to z – Eq.17; Fig.11) 
ISA z

Cyclide
shape A C D Ex Ey

ISA1

ISA3

Single-
crescent

22)( xzy EsE +–
4

|| yx ss –
C

ISA2 Torus
4

|| yx ss – 22)( xzy EsE +– A
4

zw

4

2 zyx sss ++

Cyclide parameters (vorticity parallel to y) 
ISAy

Cyclide
shape A C D Ex Ey

ISA1

ISA3

Single-
crescent

22)( xyy EsE +–
4

|| zx ss –
C

ISA2 Torus
4

|| zx ss – 22)( xyy EsE +– A
4

yw

4

2 zyx sss ++

Cyclide parameters (vorticity parallel to x – Eq.27) 
ISAx

Cyclide
shape A C D Ex Ey

ISA1

ISA3

Single-
crescent

22)( xxy EsE +–
4

|| zy ss –
C

ISA2 Torus
4

|| zy ss – 22)( xxy EsE +– A
4

xw

4

2 zyx sss ++
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3.4. Interpretation

3.4.1. Reference frame and special sections
In two dimensions (Fig. 9), the abscissa YM in Mohr space is

labelled _s, the stretching rate, whereas the ordinate XM stands
for _u, the rate of angular velocity. Expanding Mohr space to
three dimensions creates another reference axis, ZM. The phys-
ical meaning of this extra coordinate is related to the signifi-
cance of angle d, defined, as seen above, with respect to w!:
ZM represents a second angular velocity rate, measured parallel
to the vorticity vector, and not a second stretching rate. Thus,
the coordinates of a point in a Mohr-cyclide for flow represent:

(1) XM: _u(tw), component of the angular velocity rate normal
to the vorticity vector;

(2) YM: _s, stretching rate (as in 2D);
(3) ZM: _u(w), component of angular velocity rate parallel to

the vorticity vector.

A cyclide is a three-dimensional surface and, as such, can
be cut in all directions in space. Some of these cross-sections
have special significance when the cyclide is interpreted as
a Mohr-diagram for flow. Angle d defines two of these impor-
tant sections (Fig. 13):
(1) d ¼ 0�, d ¼ 180� (Fig. 13a) characterises lines where
the displacement vector _d is normal to w!, i.e., particles
moving in the plane normal to vorticity, the VPP (the vorticity
profile plane cf. Robin and Cruden, 1994). Accordingly, in
Mohr-space, these particles plot as a circle in the XMYM-plane,
with ZM ¼ 0 and, therefore, there is no angular velocity com-
ponent parallel to w!. This circle includes the ISA and the ei-
genvectors normal to vorticity, as well as l1 and l2, the lines of
no instantaneous stretch. The d ¼ 0� circle is also a symmetry
plane of the cyclide and, thus, one of the defining circles of its
parametric equations. It is essential to point out that this circle
is also the equivalent of 2D Mohr-circles in the Mohr-cyclide
(compare with Fig. 9; proof in Section 4), always defined in
the VPP. Thus, the coordinates of the centre can also be
read as gauges for the WK and AK parameters.

(2) d ¼ 90� (Fig. 13b) is the geometrical locus of particles
with _d in planes that contain the vorticity vector and one of the
w! normal eigenvectors (the flow apophyses). The eigenvector
planes do not have an angular velocity component normal to
w! and XM ¼ 0. Depending on the number of real (non-imag-
inary) eigenvalues of Lij, there can be 2, 1 or no planes with
d ¼ 90�. In the example of Fig. 13b, there are two of these sec-
tions, neither of which is a symmetry plane of the cyclide and,
as such, cannot be used to calculate cyclide parameters.



Fig. 12. The three steps to outline the geometry of a Mohr-cyclide from tensor

components.

593S. Coelho, C. Passchier / Journal of Structural Geology 30 (2008) 580e601
Eigenvector planes are equivalent to cyclide symmetry planes
only when the eigenvectors are parallel to the ISA, i.e., in co-
axial flow types. The orientation and number of eigenvector
planes are important to classify types of flow and estimate par-
ticle paths within it: two flow eigenvector occur in general
shear (cf. Simpson and De Paor, 1993) with hyperbolic flow
paths; one eigenvector plane occurs in simple shear with linear
paths; zero eigenvector planes (two imaginary eigenvalues) are
present in complex flows with closed and elliptical particle
paths (e.g. Ramberg, 1975; Means et al., 1980; Passchier,
1986; Iacopini et al., 2007). In this regard, Mohr-cyclides
are useful because they allow an immediate estimation of
number eigenvector planes, and therefore, flow type, without
referring to eigenvalue calculations. The eigenvector plane
sections within the cyclide can be read as Mohr-circles and
the orientation of a line k, for instance in the e2e3-plane with
coordinates f0; _u==w; _sg, can be determined with respect to
the eigenvectors using the familiar single- or double-angle
rule. The eigenvector planes are also important in the sense
that one of them is likely to be parallel to the boundaries of
a monoclinic shear zone developing in the steady state flow
defined by Lij (Passchier, 1998).

A second set of sections through the cyclide, with geological
meaning in terms of monoclinic flow, are the principal sections
of the instantaneous stretching ellipsoid (Fig. 14). These sec-
tions are circles within the cyclide, defined by diameters com-
prising the ISA coordinates. If flow is coaxial, the sections of
the instantaneous stretching ellipsoid are identical to the princi-
pal circles of the cyclide. For non-coaxial flow, they are not
identical and the diameters of circles ISA1ISA3 and ISA1ISA2

are related by an angle (x in Fig. 14) which only has expression
in the Mohr-cyclide. In geographical space, the ISA planes are,
by definition, at 90� of each other. The existence of this angle is
not conflicting with this statement because, in the Mohr-cyclide,
the ISA plot at opposite ends of diameters and, therefore, are or-
thogonal via the double-angle rule of Mohr-space. Representa-
tion of these sections in a typical 2D Mohr-diagram requires
more sophisticated construction methods, such as the locii of
Treagus (1986, 1990), which, although geometrically flawless,
are not as intuitive as plain circles.

The special sections of Mohr-cyclides are excellent exam-
ples of a useful property of cyclides, which states that all lines
in their curvature are circles (Allen and Dutta, 1997; Shene,
2000). From this, it follows that Mohr-cyclides are, in fact,
a collection of an infinite number of Mohr-circles defined by
their orientations with respect to a reference axis, the vorticity
vector, in the case of flow-cyclides. The paradigm of this state-
ment is the cyclide section normal to vorticity (Fig. 13a), the
three-dimensional equivalent of the 2D Mohr-circle for flow.
This allows Mohr-cyclides the potential to represent, in a sim-
ple way, multiple orientations in space, including the vorticity
profile plane, the shear zone boundary and odd outcrop sur-
faces, defined by geomorphological fancy, more often than
not in conflict with the structural geologist’s convenience.

3.4.2. Geometries and examples of Mohr-cyclides
For monoclinic flow described with Eq. (17), the type of

Mohr-cyclide depends first on the relative orientation of the
ISA reference frame with respect to the vorticity vector and,
second, on the magnitude of the instantaneous stretching
axis parallel to it.

Fig. 15 illustrates shape variations of Mohr-cyclides of
major flow types, using examples where w! is parallel to the



Fig. 13. Sections of the Mohr-cyclide according to angle d. (a) d ¼ 0/180�: the VPP, vorticity normal plane; (b) d ¼ 90�: the ‘‘flow planes’’ (note that the dashed

circle is not a part of the cyclide, but the projection of (a) in the YZ plane). Small white circles represent the centre of the Mohr-circles within the Mohr-cyclide.
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i-axis (Eq. (17)), _sj > _sk and the value of _si is variable; this is
equivalent to a case where flow parameter TK is allowed to
change. Subscripts i,j,k are preferred here because the geometry
of Mohr-cyclides depends more on the relative magnitude of
principal stretching rates than on their absolute value and is
completely independent of their real orientation, as long as
the ISA are pinned to a reference frame. Another feature that
is important to decide which shape a Mohr-cyclide will assume
is the number of eigenvectors of Lij (e) and their eigenvalues _ei,
compared to the stretching rate parallel to vorticity. Note that
the convention _sj > _sk implies _ej > _ek. For simplicity, this dis-
cussion is mainly based on isochoric flows, but the same prin-
ciples will also apply to situations with volume change.

(a) Transtensional flow (Fig. 15a; Sanderson and Marchini,
1984) is characterised by an area increase in the ISAjeISAk

plane, compensated by shortening in the direction of w!. In
terms of stretching rates, this definition implies _si < 0,
_si < _sj þ _sk and allows _si < _sk as well as _si > _sk . In isochoric



Fig. 14. The three principal planes of the instantaneous stretching ellipsoid.
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flow, this means AK ¼ �TK. Transtension can be represented
in Mohr-space by two surfaces of the cyclide family. The tran-
sition between the two shapes is governed by the relative
magnitude of _si and eigenvalues _ej, _ek: if _si < _ej, _ek, the
Mohr-cyclide will be a negative crescent cyclide, a crescent
cyclide ‘‘facing’’ the negative end of YM; if _ej < _si < _ek , the
Mohr-cyclide will be a torus with a vanishing point at _si

(see Fig. 16 below).
(b) The counterpart of transtension is transpressional flow

(Fig. 15b; Sanderson and Marchini, 1984), where area de-
crease on the ISAjeISAk plane is balanced with stretching
in the direction of w!. Translating into stretching rate values,
the conditions for transpression are _si > 0, _si > _sj þ _sk, with
_si > _sj or _si < _sj. Transpression can be illustrated by positive
crescent Mohr-cyclides (cyclides ‘‘facing’’ the positive end
of YM) for _si > _ej, _ek or torii with a vanishing point at _si for
_ej > _si > _ek(see Fig. 16 below). It is important to note that
transpression and transtension are always indistinguishable
in 2D Mohr-circles, because these diagrams consider only
one section of the bulk flow. Mohr-cyclides include informa-
tion about stretching rate parallel to vorticity and, thus, allow
the differentiation of these two types of flow.

(c) Simple shear or parallel flow (Fig. 15c) is the simplest
form of non-coaxial flows, with no volume change and charac-
terised by a kinematic vorticity number WK ¼ 1 or WK ¼ �1
(j2wij ¼ j_sj � _skj). To ensure laminar flow, TK ¼ AK ¼ 0,
which means that simple shear is always isochoric. Unlike
the previous examples, the Mohr-diagram for simple shear
flow is neither a cyclide nor a torus, but a sphere. This is
not in contradiction with the statement that 3D Mohr-diagrams
are surfaces from the cyclide family because, as seen above,
they represent a continuum in the group and the transition be-
tween single crescent cyclides and torii with vanishing points.
The sphere touches the _s-axis of the Mohr-diagram only at the
origin, which is consistent with the fact that flow tensors for
simple shear have only one eigenvector. The eigenvector lies
as expected in the plane normal to w!, at 45� with the instan-
taneous stretching axes. The instantaneous stretching axes are
orthogonal, as read, in the form of double-angles, on their re-
spective planes.

Spherical surfaces are not exclusive of simple shear flows
(with one eigenvector), as they occur whenever _si equals the
stretching rate of one of the eigenvectors in the ISAjeISAk

plane. This circumstance, however possible, represents a spe-
cial case of the Cardano condition, when two of the three real
eigenvalues coincide.

(d) Pure shear, or coaxial flow, occurs when the eigenvec-
tors of the flow coincide with the instantaneous stretching
axes, which translates in WK ¼ 0. Mohr-cyclides for pure shear
flow can be represented by different kinds of surfaces, includ-
ing negative and positive single crescent cyclides, torii,
spheres and circles, since the relative magnitudes of _si, _sj

and _sk are not relevant. However, they have one thing in com-
mon: whatever the shape, the Mohr-cyclide will be symmetric
with respect to both the XMYM- and the YMZM-planes and the
ISAjISAk circle will be centred on the YM (_s)-axis. The reason
for this is the angular velocity of the instantaneous stretching
axes, zero at all times following the definition of coaxial flow,
implies that _u(tw) ¼ _u(w) ¼ 0 (the ISA coordinates XM and
ZM are always 0).



Fig. 15. Some examples of cyclides and their shapes for different types of flow. Each part of the figure shows, from left to right: the basal section of the cyclide

(identical to the 2D Mohr circle), the 3D cyclide and an outline of the particle paths (not meant to be accurate). (a) Transtensional flow; (b) transpressional flow; (c)

simple shear flow.
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(e) Rotational flow, or super simple shear (Simpson and De
Paor, 1993) occurs whenever the kinematic vorticity number
WK has an absolute value greater than 1. Translating this con-
dition into tensor algebra, it follows that a rotational flow
tensor has only one non-imaginary real eigenvalue, in the di-
rection parallel to w!. These special cases produce negative
or positive crescent shaped Mohr-cyclides, but never torii sur-
faces, which require three real eigenvalues. Rotational flows
are easily identified by Mohr-cyclides which touch the _s-axis
only in one point, at the stretching rate correspondent to the
ISA parallel to vorticity.

(f) Outward- and inward-radiant flow types (Passchier,
1991) are defined by Mohr-cyclides of all shapes, located en-
tirely on the positive or negative _s-axis. Although mathemati-
cally possible, the existence of these flow types in Geology is
somewhat unrealistic, since they represent either ‘‘exploding’’
Fig. 16. A Mohr-cyclide for isochoric transpressional flow and th
or ‘‘imploding’’ flows with extreme volume change. The ex-
treme case of outward- or inward-radiant flows occurs for
AK ¼N. On this particular condition, the Mohr-cyclide will
be a circle. Just as spheres, circles represent a special case
of the cyclide family, characterised by _sj ¼ _sk.

The discussion so far can be summarised with an example
defined by the tensor (Fig. 16):

Lij ¼

�������
0:5 0 0

0 �2 0:75

0 �0:75 1:5

������� in the form

Lij ¼

�������
_sx 0 0

0 _sy �wx=2

0 wx=2 _sz

������� ð27Þ
ree examples of associated Mohr-circles. Discussed in text.



Tij An unspecified tensor
Tij Tensor components
Rij Rotation tensor
A, B, C, D, E Cyclide parameters
q, j Cyclide angles (long, lat)
xx, yy, zz General xyz reference frame (in text)
XM,YM,ZM Coordinates of a point in Mohr space
i, j, k (Subscripted) Unspecified components or refer-

ence frame
k; t Parallel to; orthogonal to
Sij Stress tensor
s1, s2, s3 Principal stresses (max, int, min)
P, NP Plane P, pole to P
s, sn, t Stress and its normal and shear components
snP, tP Normal and shear stress on P
4 s ^ sn

S, NS Stress plane and its pole
d NS ^ s1

a NP ^ s1

b NP ^ s2

g NP ^ s3
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From Lij components it is possible to deduce that:

(a) _sz < _sx < _sy, which means that ISA1 is parallel to the yy-
axis in the reference frame, ISA2 to the xx-axis and
ISA3 to the zz-axis.

(b) Since _sx ¼ _sy þ _sz, TK ¼ �AK, and the flow is isochoric.
(c) The vorticity vector is defined by a negative component

and is parallel to ISA2 at xx; shear sense is dextral since
WK < 0; the vorticity profile plane (VPP) lies at ISA1ISA3.

(d) The relative magnitude of the principal stretching rates
suggests that an area decrease in the VPP is compensated
by extension in the direction of ISA2.

(e) (aed) characterise a transpressional dextral flow.
(f) Calculation of the eigenvectors of Lij shows that the eigen-

value parallel to vorticity is the intermediate ( _e2); from
this it follows that an eventual material line attractor
(Passchier, 1997) will be parallel to e1 in the VPP.

When Eq. (26) is applied to this example, we obtain the to-
rus illustrated on Fig. 16, with a converging point at _sx ( _e2) that
represents the direction of the vorticity vector. This cyclide
can be sliced into multiple circular sections, some with special
significance as described above, which can be interpreted as
a single Mohr-circle. Three of these sections are:

Fig. 16a shows the vorticity profile plane (VPP) corre-
sponds to the basal cyclide circle, which contains the two
eigenvectors and the two ISA normal to w!. This is the plane
where structure asymmetry is more obvious and where shear
sense should be gauged. This section of the cyclide is identical
to the Mohr-circle for a 2D simplification and can be inter-
preted just in the same way.

Fig. 16b represents the flow plane (in the sense of Passchier,
1998), the eigenvector plane which contains the extensional
(positive) eigenvalue. The boundary of a shear zone developed
according to this flow type will be parallel to it. The flow plane
can be considered, for practical reasons, the plane of foliation,
where the lineation L can be observed and measured in the field.
An eventual second lineation L0, will plot as a line in this section
of the Mohr-cyclide.

Fig. 16c illustrates a plane which contains the vorticity vec-
tor, but lies at an angle with the eigenvectors and instantaneous
stretching axes. This plane can represent, for instance, an ‘‘S-
foliation’’ in a C þ S pair, which can be used for shear sense
determination. Sometimes it is possible to observe striations in
these planes (e.g. Lin et al., 1998) that can give additional ki-
nematic information. Such lines can also be represented in the
Mohr-cyclide.

In summary, Mohr-cyclides, since they are not limited to
2D as Mohr-circles, allow the representation of multiple struc-
tural features in the same diagram. These may include differ-
ent planes with geological meaning (or not), and all types of
lineations included in them.

4. Summary

The graphical representation of second-rank tensors in
three-dimensional Mohr-space are surfaces from the cyclide
family, just as circles for second-rank tensors in 2D. The ge-
ometry of Mohr-cyclides is independent of reference frame
and, therefore, these surfaces can be interpreted as Mohr dia-
grams. For any Tij tensor, it is possible to define the same
Mohr-cyclide from two independent approaches: analytical
polar coordinates or via parametric equations. Mohr-cyclides
are defined with respect to ei, one of the eigenvectors of Tij;
the relative magnitude of its eigenvalue defines the general
shape of the surface, all of them with a converging point at
ei: (i) ei > ej; ek-positive single-crescent cyclide; (ii) ei < ej; ek-
negative single-crescent cyclide; (iii) ej; ek > ei > ej; ek-torus
with a converging point. A Mohr-cyclide is a collection of
Mohr-circles, corresponding to different orientations in space
that may define a plane.

The concept of Mohr-cyclides is introduced in this paper
with the examples of two tensors commonly used in Geology:
the stress and flow tensors. Mohr-cyclides, however, are not
exclusive of geological problems, as they represent a general
property of all tensors, regardless of physical meaning. It is
possible to define Mohr-cyclides for additional geological ten-
sors, such as stretch and strain, as well as for other tensors
used by all natural sciences.
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Appendix A. Symbols and notations used in text



Lij Flow tensor
e; _e Eigenvectors of Lij (the flow apophysis),

eigenvalues
Dij Stretching rate tensor: stretching component of

Lij

ISA1,2,3 Instantaneous stretching axes; eigenvectors of
Dij

_s1;2;3 Instantaneous stretching rates; eigenvalues of
Dij

Wij Vorticity tensor: rotational component of Lij

w!; w; wi Vorticity vector with respect to ISA; its magni-
tude; its components

WK Sectional vorticity number
AK Sectional dilatancy number
TK Sectional extrusion number
_u Rate of angular velocity
_s Stretching rate at point m
s Mean stretching rate in the section normal to

vorticity
li Lines of no instantaneous stretch
c li ^ lj (cos c ¼ AK)
y ej^ek(cos y ¼ WK)
m! Position vector of point m in the velocity field
m!0 Position vector of m after 1 unit of time
hi m!^ ISAi
_d; d rate of displacement vector, its magnitude
U Pole of m!e _d plane
4 m!^ _d
d U ^ w! (parallel to one eigenvector)
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Appendix B. Proof that the cyclides can be
interpreted as Mohr diagrams

Means (1983) suggested that orthogonal lines in real space
always plot as diameters of a Mohr-circle, irrespective of the
components chosen to define the same tensor. In other words,
considering the tensor rotation formula,

T0ij ¼ Rij$Tij$RT
ij ðA1Þ

the Mohr-circle for T0ij will be the same as for Tij, whichever
angle q is applied in the rotation tensor Rij. Take, for instance,
a tensor of the form:

Tij ¼

������
a b 0
c d 0
0 0 f

������
Lines parallel to the xx- and yy-reference axis in the geograph-
ical space plot give a circle P, defined by a centre Ctr and a di-
ameter D:

CtrP

x :
c� b

2

y :
aþ d

2
z : 0

8>>><
>>>:

ðA2Þ
D2
p ¼ ða� dÞ2þðbþ cÞ2 ðA3Þ

From a rotation, we obtain alternative components for Tij,

a0 ¼ acos2qþ
�
bþ c

�
cos qsin qþ dsin2q

b0 ¼ bcos2qþ
�
d � a

�
cos qsin q� csin2q

c0 ¼ ccos2qþ
�
d � a

�
cos qsin q� bsin2q

d0 ¼ dcos2q�
�
bþ c

�
cos qsin qþ asin2q

f 0 ¼ f ðA4Þ

which define an alternative circle P0. Substituting Eqs. (A4) in
Eqs. (A2), the centre of circle P0 is given by:

CtrP0

x :
c
�
cos2qþ sin2q

�
� b
�
cos2qþ sin2q

�
2

y :
a
�
cos2qþ sin2q

�
þ d
�
cos2qþ sin2q

�
2

z : 0

8>>><
>>>:

ðA5Þ

With the fundamental rule of trigonometry it is clear that Eqs.
(A2) and Eq. (A5) are identical. The diameter of circle P0, af-
ter substitution of Eq. (A4) on Eq. (A3) and rather extensive
use of the associative property of multiplications, can be writ-
ten as:

D2
P0 ¼ ða� dÞ2

�
cos2qþ sin2q

�2þðbþ cÞ2
�
cos2qþ sin2q

�2

ðA6Þ

which is equal to the unprimed diameter (Eq. (A3)). Thus, it is
safe to say that circles P and P0 are one and the same, with
equal diameter and centre coordinates, and that both represent
a Mohr-circle.

The general proof for circles described above confirms that
the basal circle in a Mohr-cyclide (e.g. Fig. 13a) is a Mohr-cir-
cle, but cannot be applied to the whole surface, because the cy-
clide geometry is more complex than a circle. To prove that
a cyclide can be interpreted as a Mohr-diagram, it is necessary
to recall an important property: the cyclide shape is defined by
its parameters A, B, C, D (Shene, 2000), as well as parameter E
and angle r (this work). With this in mind, it is possible to ex-
pand Means’ proof for cyclides: A cyclide will be a Mohr-dia-
gram for Tij if and only if its parameters A, B, C, D, E and r

remain constant whatever combination of components is cho-
sen from the infinite possibilities available to define Tij, which
is equivalent to say that, the Mohr-cyclide for Tij is identical to
the Mohr-cyclide for T0ij.

For an unspecified tensor Tij, with f > a; d, the cyclide pa-
rameters are given by the following formulas:

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ey� f

�2þE 2
x

q
ðA7Þ
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B¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 �C2
p

ðA8Þ

C¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ cÞ2þða� dÞ2

q
4

ðA9Þ

D¼ C ðA10Þ

E
Ex ¼

c� b

2

Ey ¼
aþ dþ 2f

4

8><
>: ðA11Þ

tan r¼ c� b

aþ dþ 2f
or tan r¼ c� b

aþ d� 2f
ðA12Þ

From this list, it is clear that only four parameters, A, C, E and
r, are independent and necessary to prove the condition.

(I) Parameter C. Simple inspection of Eq. (A9) shows that
4C is given by an equation identical to the diameter of a circle
(Eq. A3). Substituting Eq. (A4) in Eq. (A9) yields a result
identical to Eq. (A3) and, thus: 4C ¼ 4C0.

(II) Parameter E. Substituting Eq. (A4) in Eq. (A11) gives:

E
Ex ¼

c
�
cos2qþ sin2q

�
� b
�
cos2qþ sin2q

�
2

Ey ¼
a
�
cos2qþ sin2q

�
þ d
�
cos2qþ sin2q

�
þ 2f

4

8>><
>>: ðA13Þ

Thus, E ¼ E0

(III) Parameter A. From (II) and Eq. (A13), and taking into
account that f ¼ f 0 (Eq. (A4)), it is clear that A ¼ A0.

(IV) Angle r. Substituting Eq. (A4) in Eq. (A12) yields:

tan r0 ¼
c
�
cos2qþ sin2q

�
� b
�
cos2qþ sin2q

�
a
�
cos2qþ sin2q

�
þ d
�
cos2qþ sin2q

�
þ 2f

or

tan r0 ¼
c
�
cos2qþ sin2q

�
� b
�
cos2qþ sin2q

�
a
�
cos2qþ sin2q

�
þ d
�
cos2qþ sin2q

�
� 2f

ðA14Þ

And, therefore, r ¼ r0.
From (I) to (IV), it is possible to conclude that the cyclide

parameters are independent from any rotation applied to Tij.
Thus, the cyclide remains the same whether defined by Tij

or T0ij and can be interpreted as a Mohr-diagram. This is
also consistent with the definition of a tensor as a mathematical
entity independent of reference frame.
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